Macro Processors

. How could a nonrecursive macro processor allow for the invocation of
macros within macros? What would be the advantages and disad-
vantages of such an approach?

. Select two different high-level programming languages with which
you are familiar. What differences between these languages might be
significant to a macro processor that is intended for use with the
language?

. Select one high-level language and one (real) assembler language
with which you are familiar. What differences between these lan-
guages might be significant to a macro processor that is intended for
use with the language?

. Outline an algorithm for combining a line-by-line macro processor
with an assembler.

. List utility functions and routines that might be shared by an assem-
bler and an integrated macro processor.

. Using the methods outlined in Chapter 8, develop a modular design
for a two-pass assembler with an integrated macro processor.

231

Chapter 5

Compilers

In this chapter we discuss the design and operation of compilers for high-level
programming languages. Many textbooks and courses are entirely devoted to
compiler construction. We obviously cannot hope to cover the subject thor-
oughly in a single chapter. Instead, our goal is to give the reader an under-
standing of how a typical compiler works. We introduce the most important
concepts and issues related to compilers, and illustrate them with examples.
As each subject is discussed, we give references for those readers who want to
explore the topic in more detail.

Section 5.1 presents the basic functions of a simple one-pass compiler. We
illustrate the operation of such a compiler by following an example program
through the entire translation process. This section contains somewhat more

detail than the other parts of the chapter because of the fundamental importance

of the material.

Section 5.2 discusses machine-deperdent extensions to the basic scheme
presented in Section 5.1. These extensions are mainly in the area of object code
generation and optimization. Section 5.3 describes some machine-independent
extensions to the basic scheme.

Section 5.4 describes some compiler design alternatives. These include
multi-pass compilers, interpreters, P-code compilers, and compiler-compilers.
Finally, Section 5.5 presents five examples of actual compilers and compiler-
writing systems, and relates them to the concepts introduced in previous
sections.

5.1 BASIC COMPILER FUNCTIONS

This section introduces the fundamental operations that are necessary in
compiling a typical high-level language program. We use as an example the
Pascal program in Fig. 5.1; however, the concepts and approaches that we
discuss can also be applied to the compilation of programs in other languages.

For the purposes of compiler construction, a high-level programming
language is usually described in terms of a grammar. This grammar specifies the
form, or syntax, of legal statements in the language. For example, an assignment

233

234 System Software

1 PROGRAM STATS

2 VAR

3 SUM, SUMSQ, I, VALUE, MEAN, VARIANCE : INTEGER .
4 BEGIN '
5 SUM := O0;

6 SUMSQ := 0;

7 FOR I := 1 TO 100 DO

8 BEGIN

9 READ (VALUE) ;

10 SUM := SUM + VALUE;

11 SUMSQ := SUMSQ + VALUE * VALUE

12 END;

13 MEAN := SUM DIV 100;

14 VARIANCE := SUMSQ DIV 100 - MEAN * MEAN;

15 WRITE (MEAN, VARIANCE)

16 END

Figure 5.1 Example of a Pascal program.

statement might be defined by the grammar as a variable name, followed by an
assignment operator (:=), followed by an expression. The problem of compilation
then becomes one of matching statements written by the programmer to struc-
tures defined by the grammar, and generating the appropriate object code for
each statement.

It is convenient to regard a source program statement as a sequence of
tokens rather than simply as a string of characters. Tokens may be thought of as
the fundamental building blocks of the language. For example, a token might
be a keyword, a variable name, an integer, an arithmetic operator, etc. The task
of scanning the source statement, recognizing and classifying the various
tokens, is known as lexical analysis. The part of the compiler that performs this
analytic function is commonly called the scanner. .

After the token scan, each statement in the program must be recognized as
some language construct, such as a declaration or an assignment statement,
described by the grammar. This process, which is called syntactic analysis or
parsing, is performed by a part of the compiler that is usually called the parser.
The last step in the basic translation process is the generation of object code.
Most compilers create machine-language programs directly instead of producing
a symbolic program for later translation by an assembler.

Although we have mentioned three steps in the compilation process—
scanning, parsing, and code generation—it is important to realize that a compiler
does not necessarily make three passes over the program being translated. For
some languages, it is quite possible to compile a program in a single pass. Our
discussions in this section describe how such a one-pass compiler might work.

Compilers

On the other hand, compilers for other languages and compilers that perform
sophisticated code optimization or other analysis of the program generally
make several passes. In Section 5.4 we discuss the division of a compiler into
passes. Section 5.5 gives several examples of the structure of actual compilers.

In the following sections we discuss the basic elements of a simple compi-
lation process, illustrating their application to the example program in Fig. 5.1.
Section 5.1.1 introduces some concepts and notation used in specifying gram-
mars for programming languages. Sections 5.1.2 through 5.1.4 discuss, in turn,
the functions of lexical analysis, syntactic analysis, and code generation.

5.1.1 Grammars

A grammar for a programming language is a formal description of the syntax,
or form, of programs and individual statements written in the language. The
grammar does not describe the semantics, or meaning, of the various state-
ments; such knowledge must be supplied in the code-generation routines. As
an illustration of the difference between syntax and semantics, consider the
two statements

and

where X and Y are REAL variables and I, J, K are INTEGER variables. These
two statements have identical syntax. Each is an assignment statement; the
value to be assigned is given by an expression that consists of two variable
names separated by the operator +. However, the semantics of the two
statements are quite different. The first statement specifies that the variables in
the expression are to be added using integer arithmetic operations. The second
statement specifies a floating-point addition, with the integer operand I being
converted to floating point before adding. Obviously, these two statements
would be compiled into very different sequences of machine instructions.
However, they would be described in the same way by the grammar. The
differences between the statements would be recognized during code
generation. :

A number of different notations can be used for writing grammars. The
one we describe is called BNF (for Backus-Naur Form). BNF is not the most
powerful syntax description tool available. In fact, it is not even totally ade-
quate for the description of some real programming languages. It does,

235

236

R0 J oUW

System Software

however, have the advantages of being simple and widely used, and it
provides capabilities that are sufficient for most purposes. Figure 5.2 gives one
possible BNF grammar for a highly restricted subset of the Pascal language.
A complete BNF grammar for Pascal can be found in Jensen and Wirth (1974).
In the remainder of this section, we discuss this grammar and show how it
relates to the example program in Fig. 5.1.

A BNF grammar consists of a set of rules, each of which defines the syntax
of some construct in the programming language. Consider, for example,
Rule 13 in Fig. 5.2:

<read> ::= READ (<id-list>)

This is a definition of the syntax of a Pascal READ statement that is denoted in
the grammar as <read>. The symbol ::= can be read “is defined to be.” On the
left of this symbol is the language construct being defined, <read>, and on the
right is a description of the syntax being defined for it. Character strings
enclosed between the angle brackets < and > are called nonterminal symbols.
These are the names of constructs defined in the grammar. Entries not
enclosed in angle brackets are terminal symbols of the grammar (i.e., tokens). In
this rule, the nonterminal symbols are <read> and <id-list>, and the terminal
symbols are the tokens READ, (, and). Thus this rule specifies that a <read>
consists of the token READ, followed by the token (, followed by a language
construct <id-list>, followed by the token). The blank spaces in the grammar
rules are not significant. They have been included only to improve readability.

<prog>
<prog-name>
<dec-list>
<dec>
<type>
<id-list>
<stmt-list>
<stmt>
<assign>
<exp>
<term>
<factor>
<read>
<write>
<for>
<index-exp>
<body>

: PROGRAM <prog-name> VAR <dec-list> BEGIN <stmt-list> END.
;2= id

<dec> | <dec-list> ; <dec>

: <id-list> : <type>

::= INTEGER '

id | <id-list> , id

<stmt> | <stmt-list> ; <stmt>

::= <assign> | <read> | <write> | <for>

1:= id = <exp>

::= <term> | <exp> + <term> | <exp> - <term>

::= <factor> | <term> * <factor> | <term> DIV <factor>
;= id | int l (<exp>)

::= READ (<id-list>!)

::= WRITE (<id-list>)

::= FOR <index-exp> DO <body>

r:= dd = <exp>_TO <exp>

::= <stmt> | BEGIN <stmt-list> END

i

1]

. Figure 5.2 Simplified Pascal grammar.

Compilers

To recognize a <read>, of course, we also need the definition of <id-list>.
This is provided by Rule 6 in Fig. 5.2:

<id-list> ::= id | <id-list>, id

This rule offers two possibilities, separated by the | symbol, for the syntax
of an <id-list>. The first alternative specifies that an <id-list> may consist
simply of a token id (the notation id denotes an identifier that is recognized by
the scanner). The second syntax alternative is an <id-list>, followed by the
token “,” (comma), followed by a token id. Note that this rule is recursive,
which means the construct <id-list> is defined partially in terms of itself.
By trying a few examples you should be able to see that this rule includes
in the definition of <id-list> any sequence of one or more id’s separated by
commas. Thus

ALPHA
is an <id-list> that consists of a single id ALPHA;
ALPHA BETA

is an <id-list> that consists of another <id-list> ALPHA, followed by a comma,
followed by an id BETA, and so forth.

It is often convenient to display the analysis of a source statement in terms
of a grammar as a tree. This tree is usually called the parse tree, or syntax tree,
for the statement. Figure 5.3(a) shows the parse tree for the statement

READ (VALUE)

in terms of the two rules just discussed.
Rule 9 of the grammar in Fig. 5.2 provides a definition of the syntax of an
assignment statement:

<assign> ::= id := <exp>

That is,:an <assign> consists of an id, followed by the token :=, followed by an
expression <exp>. Rule 10 gives a definition of an <exp>:

<exp>: ::= <term> | <exp> + <term> | <exp> — <term>

237

238

System Software

(read)
(id-list)
READ (ia
{VALUE}
(a)
(assign)
(exp)
(exp)
(term) (term)
(term) (term)
(factor) (factor) (factor) (factor)
i4 i= ia DIV int - ia * id
{VARIANCE} {SUMSQ} {100} {MEAN} {MEAN}

(b)

Figure 5.3 Parse trees for two statements from Fig. 5.1.

By reasoning similar to that applied to <id-list>, we can see that this rule
defines an expression <exp> to be any sequence of <term>s connected by the
operators + and —. Similarly, Rule 11 defines a <term> to be any sequence of
<factor>s connected by * and DIV. Rule 12 specifies that a <factor> may consist
of an identifier id or an integer int (which is also recognized by the scanner) or
an <exp> enclosed in parentheses.

Figure 5.3(b) shows the parse tree for statement 14 from Fig. 5.1 in terms of
the rules just described. You should examine this figure carefully to be sure

Compilers

you understand the analysis of the source statement according to the rules of
the grammar. In Section 5.1.3, we discuss methods for performing this sort of
syntactic analysis in a compiler.

Note that the parse tree in Fig. 5.3(b) implies that multiplication and division
are done before addition and subtraction. The terms SUMSQ DIV 100 and
MEAN * MEAN must be calculated first since these intermediate results are
the operands (left and right subtrees) for the — operation. Another way of saying
this is that multiplication and division have higher precedence than addition
and subtraction. These rules of precedence are implied by the way Rules 10-12
are constructed (see Exercise 5.1.3). In Section 5.1.3 we see a way to make use
of such precedence relationships during the parsing process.

The parse trees shown in Fig. 5.3 represent the only possible ways to
analyze these two statements in terms of the grammar of Fig. 5.2. For some
grammars, this might not be the case. If there is more than one possible parse
tree for a given statement, the grammar is said to be ambiguous. We prefer to
use unambiguous grammars in compiler construction because, in some cases,
an ambiguous grammar would leave doubt about what object code should be
generated.

Figure 5.4 shows the parse tree for the entire program in Fig. 5.1. You
should examine this figure carefully to see how the form and structure of the
program correspond to the rules of the grammar in Fig. 5.2.

5.1.2 Lexical Analysis

Lexical analysis involves scanning the program to be compiled and recogniz-
ing the tokens that make up the source statements. Scanners are usually
designed to recognize keywords, operators, and identifiers, as well as integers,
floating-point numbers, character strings, and other similar items that are
written as part of the source program. The exact set of tokens to be recognized,
of course, depends upon the programming language being compiled and the
grammar being used to describe it.

[tems such as identifiers and integers are usually recognized directly as
single tokens. As an alternative, these tokens could be defined as a part of the
grammar. For example, an identifier might be defined by the rules

<ident> ::= <letter> | <ident> <letter> | <ident> <digit>
<letter> ::= A | B|C|D]| ... | 2
<digit> ::= O] 1 |2 |3] ...1]9

In such a case the scanner would recognize as tokens the single characters A, B,
0, 1, and so on. The parser would interpret a sequence of such characters as the
language construct <ident>. However, this approach would require the parser

239

System Software

240

TANE (3AsTT-3w3as)

NIOdFd

{0}
uy
(0) |
Juy {10303)
{OSHNS} {WNs} _ _
°3 PT (x030e7) (wza3)
{NVdW} {00T} _ {0071} _ _ _ {WNs} {WNs}
PT uy (10303) UY (x030e3) (wie3) (dxe) =: 143 PT
{NYEN} _ . {OSHNS} ! amz:mv _
PT (1030e3) (0303) AT (WIDI) (XI0310€F) ATQ (wIa3) (dxa) =: P} (ubtsse) (3sTT-PT)
L1 | L1 | _I_.I_IL _l_.l_'L
T | :v
(x030®e])% (waay) (wiay) (wz23) {(ubtsse) (qwas) (3ast1-pPT)
{NVIRW} {NVARW} {3NTVA} _
PT lwuxal) - (dxa) (dxa) =: PY {uas) ! (3ST[-3W3s) PT (3sT1-PT)
CEDNYINVYAY — {HONVIHYA} — _ ;?.hzy _
Pt ‘ {asTT-pT) (dxa) = Py (ubtsse) (auys) ! ‘{astr-p1)
! _ | | _||_|_|_
ﬁ Euzﬁmﬁi
((3STT-PT)) ALIUM (ubisse) {(qwis) ! (3STT-2u3s) MADIINI ‘{asTr-PT)
(@31t1Im) {3w3s) H (3s17-3wis) (odAa) : {as11-PT)
| | {SLYLS)
(quas) H {3s17-3us) (oo9p) PT

{(3IST{-D9p) ¥YA (aweu-Hoixd) WYIOHOUd

{ Bboxd)

241

w
M .
g "1'G “Bi4 wouy weiboid ay) ioj 981} asied G aInbi4
S
O
{nns}
PT
{anTYn}t {OSRKNS} {30TYA} _
PT PY PT (xo30e3)
{anva) _ _ _ _ {3nIvAn}
131 (z030e3) (x0230®3) (1030®3) (ux=3) PT
_ | I I _
(x03003) * (wWaa3l) (wray) (uze3) + (dxa) ((3sTT1-PT)) avay
_ _ {Wns? _
(wxo3) + {dxa) (dxa) =: PT (pea1)
{OSWNS} {cot} (1}
(dxs) =: -3 (ubtsse) (quwas) uy 3ur
(ubrsse) (Julas) {(3sT1-3w3s) (3Io030p3) (a03DeF)
{Juis) : {3ST[-3W3S) {wrs]) {wasy)
_ : {1}
aN= (3st1-3uas) NIDII (dxa) oL (dxo) =: PT
{ Apod) od (dxa-xapur) +H0d

_ _ _

242

System Software

to recognize simple identifiers using general parsing techniques such
as those discussed in the next section. A special-purpose routine such as the
scanner can perform this same function much more efficiently. Since a large
part of the source program consists of such multiple-character identifiers, this
saving in compilation time can be highly significant. In addition, restrictions
such as a limitation on the length of identifiers are easier to include in a scanner
than in a general-purpose parsing routine.

Similarly, the scanner generally recognizes both single- and multiple-
character tokens directly. For example, the character string READ would be inter-
preted as a single token rather than as a sequence of four tokens R, E, A, D. The
string := would be recognized as a single assignment operator, not as - followed
by =. Itis, of course, possible to handle multiple-character tokens one character at
a time, but such an approach creates considerably more work for the parser.

The output of the scanner consists of a sequence of tokens. For efficiency of
later use, each token is usuaily represented by some fixed-length code, such as
an integer, rather than as a variable-length character string. In such a coding
scheme for the grammar of Fig. 5.2 (shown in Fig. 5.5) the token PROGRAM

Token Code
PROGRAM 1
VAR 2
BEGIN 3
END 4
END. 5
INTEGER 6
FOR 7
READ 8
WRITE 9
- TO 10
DO 11
B 12
: 13
' 14
= 15
+ 16
17
18
DIV 19
(20
) 21
id 22
int 23

Figure 5.5 Token coding scheme for the grammar from Fig. 5.2.

Compilers

would be represented by the integer value 1, an identifier id would be
represented by the value 22, and so on.

When the token being scanned is a keyword or an operator, such a coding
scheme gives sufficient information. In the case of an identifier, however, it is also
necessary to specify the particular identifier name that was scanned. The same is
true of integers, floating-point values, character-string constants, etc. This can be
accomplished by associating a token specifier with the type code for such tokens.
This specifier gives the identifier name, integer value, etc., that was found by the
scanner. Some scanners are designed to enter identifiers directly into a symbol
table, which is similar to the symbol table used by an assembler, when they are
first recognized. In that case, the token specifier for an identifier might be a
pointer to the symbol-table entry for that identifier. This approach avoids much
of the need for table searching during the rest of the compilation process.

Figure 5.6 shows the output from a scanner for the program in Fig. 5.1,
using the token coding scheme in Fig. 5.5. For token type 22 (identifier), the
token specifier is a pointer to a symbol-table entry (denoted by "SUM,
ASUMSAQ), etc.). For token type 23 (integer), the specifier is the value of the
integer (denoted by #0, #100, etc.). ,

We have shown the output from the scanner as a list of token codings;
however, this does not mean that the entire program is scanned at one time,
before any other processing. More often, the scanner operates as a procedure
that is called by the parser when it needs another token. In this case, each call to
the scanner would produce the coding (and specifier, if any) for the next token
in the source program. The parser would be responsible for saving any tokens
that it might require for later analysis. An example of this can be found in the
next section.

In addition to its primary function of recognizing tokens, the scanner
usually is responsible for reading the lines of the source program as needed,
and possibly for printing the source listing. Comments are ignored by the
scanner, except for printing on the output listing, so they are effectively
removed from the source statements before parsing begins.

Modeling Scanners as Finite Automata

The tokens of most programming languages can be recognized by a finite
automaton. Mathematically, a finite automaton consists of a finite set of states
and a set of transitions from one state to another. One of the states is desig-
nated as the starting state, and one or more states are designated as final states.
Finite automata are often represented graphically, as illustrated in
Fig. 5.7(a). States are represented by circles, and transitions by arrows from
one state to another. Each arrow is labeled with a character or a set of characters
that cause the specified transition to occur. The starting state has an arrow

243

244

Line

System Software

Token type

N
NN =

14
22
14
22
14
22
14
22
14
22
13

22
15
23
12
22
15
23
12

22
15
23
10
23
11

20
22
21
12

Figure 5.6 Lexical scan of the program from Fig. 5.1.

Token specifier Line Token type Token specifier
10 22 “SUM
“STATS 15
22 “SUM
“SUM 16
22 "VALUE
~SUMSQ 12
1 22 ~SUMSQ
"1 15
22 ~SUMSQ
“VALUE 16
22 "VALUE
“MEAN 18
22 “VALUE
"VARIANCE 12 4
12
13 22 “MEAN
15
“SUM 22 “SUM
19
#0 23 #100
12 }
~SUMSQ 14 22 “VARIANCE
15
#0 22 ~SUMSQ
19
23 #100
"1 17
22 “MEAN
#1 18
22 "MEAN
#100 12
15 9
20
22 “MEAN
14
“VALUE 22 “VARIANCE
21 ‘
16 5

Compilers

(a)
abc {recognized)
abccabc {recognized]}
' ac {not recognized)
(b)

Figure 5.7 Graphical representation of a finite automaton.

entering it that is not connected to anything else [see State 1 in Fig. 5.7(a)].
Final states are identified by double circles (see State 4).

We can visualize the finite automaton as beginning in the starting state,
and moving from one state to another as it examines the characters being
scanned. It stops when there is no transition from its current state that matches
the next character to be scanned (or when there are no more characters to
scan). If the automaton stops in a final state, we say that it recognizes (or
accepts) the string being scanned. If it stops in a non-final state, it fails to recog-
nize (or rejects) the string.

Consider, for example, the finite automaton shown in Fig. 5.7(a) and the
first input string in Fig. 5.7(b). The automaton starts in State 1 and examines
the first character of the input string. The character a causes the automaton to
move from State 1 to State 2. The b causes a transition from State 2 to State 3,
and the ¢ causes a transition from State 3 to State 4. At this point, all characters
have been scanned, so the finite automaton stops in State 4. Because this is a
final state, the automaton recognizes the string abc.

Similarly, consider the second input string shown in Fig. 5.7(b). The scanning
of the first three characters happens$ exactly as described above. This time,
however, there are still characters left in the input string. The fourth character
of the string (the second ¢) causes the automaton to remain in State 4 (note the
arrow labeled with ¢ that loops back to State 4). The following a takes the
automaton back to State 2. At the end of the input string, the finite automaton
is again in State 4, 50 it recognizes the string abccabc.

On the other hand, consider the third input string in Fig. 5.7(b). The finite
automaton begins in State 1, as before, and the a causes a transition from

245

246

System Software

State 1 to State 2. Now the next character to be scanned is c. However, there is
no transition from State 2 that is labeled with c. Therefore, the automaton must
stop in State 2. Because this is not a final state, the finite automaton fails to
recognize the input string. If you try some other examples, you will discover
that the finite automaton in Fig. 5.7(a) recognizes tokens of the form abc...abc...
where the grouping abc is repeated one or more times, and the ¢ within each
grouping may also be repeated.

Figure 5.8 shows several finite automata that are designed to recognize
typical programming language tokens. Figure 5.8(a) recognizes identifiers and
keywords that begin with a letter and may continue with any sequence of
letters and digits. Notice the notation A-Z, which specifies that any character
from A to Z may cause the indicated transition. For simplicity, we have considered
only uppercase letters in this example.

Some languages allow identifiers such as NEXT_LINE, which contains the
underscore character (_). Figure 5.8(b) shows a finite automaton that recog-
nizes identifiers of this type. Notice that this automaton does not allow identi-
fiers that begin or end with an underscore, or that contain two consecutive
underscores.

The finite automaton in Fig. 5.8(c) recognizes integers that consist of a
string of digits, including those that contain leading zeroes, such as 000025.
Figure 5.8(d) shows an automaton that does not allow leading zeroes, except
in the case of the integer 0. An integer that consists only of the digit 0 must be
followed by a space to separate it from the following token. You are encouraged
to try several example strings with the finite automata in Fig. 5.8, to be sure
you see how they work.

Each of the finite automata we have seen so far was designed to recognize
one particular type of token. Figure 5.9 shows a finite automaton that can rec-
ognize all of the tokens listed in Fig. 5.5. Notice that for simplicity we have
chosen to recognize all identifiers and keywords with one final state (State 2).
A separate table look-up operation could then be used to distinguish keywords.
Likewise, a separate check could be made to ensure that identifiers are of a
length permitted by the language definition. (Finite automata cannot easily
represent limitations on the length of strings being recognized.)

A similar kind of special case occurs in State 3. This state is included to
recognize the keyword “END.” (token type 5 in Fig. 5.5). Suppose, however,
that the scanner encounters an erroneous token such as “VAR.”. When the
automaton stops in State 3, the scanner should perform a check to see whether
the string being recognized is “END.”. If it is not, the scanner could, in effect,
back up to State 2 (recognizing the “VAR”). The period would then be
re-scanned as part of the following token the next time the scanner is called.
Notice that this kind of backup is not required with State 7. The sequence := is
always recognized as an assignment operator, not as : followed by =.

Compilers .

A-Z
0-9

o 1 2 ‘@

(a)

(b)

0-9

0-9
(D2 ()

(c)

0-9

C > space

(d)
Figure 5.8 Finite automata for typical programming language tokens.

- —

247

248

System Software

©

Figure 5.9 Finite automaton to recognize tokens from Fig. 5.5.

Finite automata provide an easy way to visualize the operation ot a
scanner. However, the real advantage of this kind of representation is in ease
of implementation. Consider again the problem of recognizing identifiers that
may contain underscores. Figure 5.10(a) shows a typical algorithm to recognize
such a token.

Figure 5.10(b) shows the finite automaton from Fig. 5.8(b) represented in a
tabular form. Each row of the table corresponds to one of the states of the
automaton. Each entry in the row specifies the transition that occurs when a
character listed in the heading of that column is scanned. If there is no entry in
a column, there is no transition corresponding to that character, and the
automaton halts. For example, the first row (corresponding to State 1) specifies
a transition to State 2 if one of the characters A-Z is scanned; the automaton
halts if 0~9 or underscore is scanned.

It is easy to imagine a program that simulates the operation of a finite
automaton by traversing the tabular representation. With such a program, the
implementation of the automaton would simply require writing down the
entries in the table. The tabular representation is usually much clearer and less
error-prone than an algorithmic representation such as Fig. 5.10(a). It is also
much easier to change table entries than to modify nested loops or procedure
calls.

Compilers

get first Input_Character
Af Input_Character in ['A’..’Z’] then

begin
while Input_Character in ['A’..’Z’, '0’'..’9’] do
begin
get next Input_Character
if Input_Character = ‘_’ then
begin
get next Input_Character
Last_Char_Is Underscore := true
end {if ‘_'}
else
Last_Char_Is_Underscore := false
end {while}

if Last_Char Is Underscore then
return (Token_Error)
else
return (Valid_Token)
end {if first in ['A’..’Z'])
else
return (Token_Error)

(a)
State A-2Z 0-9 -
1 2 {starting state}
2 2 2 2 {final state}
3 2 2
(b)

Figure 5.10 Token recognition using (a) algorithmic code and (b) tabular
representation of finite automaton.

Further discussions of finite automata and the implementation of scanners
can be found in Aho et al. (1988).

5.1.3 Syntactic Analysis

During syntactic analysis, the source statements written by the programmer
are recognized as language constructs described by the grammar being used.
We may think of this process as building the parse tree for the statements
being translated. Parsing techniques are divided into two general classes—
bottom-up and top-down—according to the way in which the parse tree is
constructed. Top-down methods begin with the rule of the grammar that spec-
ifies the goal of the analysis (i.e., the root of the tree), and attempt to construct

250

System Software

the tree so that the terminal nodes match the statements being analyzed.
Bottom-up methods begin with the terminal nodes of the tree (the statements
being analyzed), and attempt to combine these into successively higher-level
nodes until the root is reached.

A large number of different parsing techniques have been devised, most of
which are applicable only to grammars that satisfy certain conditions.

Recursive-Descent Parsing

A top-down method which is known as recursive descent, is made up of a
procedure for each nonterminal symbol in the grammar. When a procedure is
called, it attempts to find a substring of the input, beginning with the current
token, that can be interpreted as the nonterminal with which the procedure is
associated. In the process of doing this, it may call other procedures, or even
call itself recursively, to search for other nonterminals. If a procedure finds the
nonterminal that is its goal, it returns an indication of success to its caller. It
also advances the current-token pointer past the substring it has just recog-
nized. If the procedure is unable to find a substring that can be interpreted as
the desired nonterminal, it returns an indication of failure, or invokes an-error
diagnosis and recovery routine.

As an example of this, consider Rule 13 of the grammar in Fig. 5.2. The
procedure for <read> in a recursive-descent parser first examines the next two
input tokens, looking for READ and (. If these are found, the procedure for
<read> then calls the procedure for <id-list>. If that procedure succeeds, the
<read> procedure examines the next input token, looking for). If all these tests
are successful, the <read> procedure returns an indication of success to its
caller and advances to the next token following). Otherwise, the procedure
returns an indication of failure.

The procedure is only slightly more complicated when there are several
alternatives defined by the grammar for a nonterminal. In that case, the proce-
dure must decide which of the alternatives to try. For the recursive-descent
technique, it must be possible to decide which alternative to use by examining
the next input token. There are other top-down methods that remove this
requirement; however, they are not as efficient as recursive descent. Thus the
procedure for <stmt> looks at the next token to decide which of its four alter-
natives to try. If the token is READ, it calls the procedure for <read>; if the
token is id, it calls the procedure for <assign> because this is the only alternative
that can begin with the token id, and so on.

If we attempted to write a complete set of procedures for the grammar of
Fig. 5.2, we would discover a problem. The procedure for <id-list>, corre-
sponding to Rule 6, would be unable to decide between its two alternatives

Compilers

since both id and <id-list> can begin with id. There is, however, a more
fundamental difficulty. If the procedure somehow decided to try the second
alternative (<id-list>, id), it would immediately call itself recursively to find an
<id-list>. This could result in another immediate recursive call, which leads
to an unending chain. The reason for this is that one of the alternatives for
<id-list> begins with <id-list>. Top-down parsers cannot be directly used with
a grammar that contains this kind of immediate left recursion. The same prob-
lems also occur with respect to Rules 3, 7, 10, and 11. Methods for eliminating
left recursion from a grammar are described in Aho et al. (1988).

Figure 5.11 shows the grammar from Fig. 5.2 with left recursion eliminated.
Consider, for example, Rule 6a in Fig. 5.11:

<id-list> ::= id { , id }

This notation, which is a common extension to BNF, specifies that the terms
between { and | may be omitted, or repeated one or more times. Thus Rule 6a
defines <id-list> as being composed of an id followed by zero or more occur-
rences'of “, id”. This is clearly equivalent to Rule 6 of Fig. 5.2. With the revised
definition, the procedure for <id-list> simply looks first for an id, and then
keeps scanning the input as long as the next two tokens are a comma (,) and
id. This eliminates the problem of left recursion and also the difficulty of
deciding which alternative for <id-list> to try.

1 <prog> ::= PROGRAM <prog-name> VAR <dec-list> BEGIN <stmt-list> END.
2 <prog-name> o= id

3a <dec-list> ::= <dec> { ; <dec> }

4 <dec> i:= <id-list> : <type>

5 <type> ::= INTEGER

ba <id-list> ::=id {, id)}

7a <stmt-list> 1= <stmt> { ; <stmt> }

g8 <stmt> ::= <assign> | <read> | <write> | <for>

9 <assign> p:= id = <exp>

10a <exp> (1= <term> { + <term> | - <term> }

lla <term> ::= <factor> { * <factor> | DIV < factor> }
12 <factor> i:= dd | int | (<exp>)

13 <read> READ (<id-list>)

14 <write> WRITE (<id-list>)

15 <for> FOR <index-exp> DO <bedy>

16 <index-exp> id := <exp> TO <exp>

17 <body> = <stmt> | BEGIN <stmt-list> END

Figure 5.11

descent parse.

Simplified Pascal grammar modified for recursive-

251

252

System Seftware

Similar changes have been made in Rules 3a, 7a, 10a, and 11a in Fig. 5.11.
You should compare these rules to the corresponding definitions in Fig. 5.2 to
be sure you understand the changes made. Note that the grammar itself is still
recursive: <exp> is defined in terms of <term>, which is defined in terms of
<factor>, and one of the alternatives for <factor> involves <exp>. This means
that recursive calls among the procedures of the parser are still possible.
However, direct left recursion has been eliminated. A chain of calls from
<exp> to <term> to <factor> and back to <exp> must always consume at least
one token from the input statement.

Figure 5.12 illustrates a recursive-descent parse of the READ statement on
line 9 of Fig. 5.1, using the grammar in Fig. 5.11. Figure 5.12(a) shows the pro-
cedures for the nonterminals <read> and <id-list>, which follow the verbal
descriptions just given. It is assumed that TOKEN contains the type of the next
input token, using the coding scheme shown in Fig. 5.5. You should examine
these procedures carefully to be sure you understand how they were derived
from the grammar. :

In the procedure IDLIST, note that a comma (,) that is not followed by an
id is considered to be an error, and the procedure returns an indication of failure
to its caller. If a sequence of tokens such as “id,id,” could be a legal canstruct
according to the grammar, this recursive-descent technique would not work
properly. For such a grammar, it would be necessary to use a more complex
parsing method that would allow the top-down parser to backtrack after
recognizing that the last comma was not followed by an id.

Figure 5.12(b) gives a graphic representation of the recursive-descent parsing
process for the statement being analyzed. In part (i), the READ procedure has
been invoked and has examined the tokens READ and (from the input stream
(indicated by the dashed lines). In part (ii), READ has called IDLIST (indicated by
the solid line), which has examined the token id. In part (iii), IDLIST has returned
to READ, indicating success; READ has then examined the input token). This
completes the analysis of the source statement. The procedure READ will now
return to its caller, indicating that a <read> was successfully found. Note that the
sequence of procedure calls and token examinations has completely defined the
structure of the READ statement. The representation in part (iii) is the same as
the parse tree in Fig. 5.3(a). Note also that the parse tree was constructed begin-
ning at the root, hence the term top-dowm parsing. '

Figure 5.13 illustrates a recursive-descent parse of the assignment statement
on line 14 of Fig. 5.1. Figure 5.13(a) shows the procedures for the nonterminal
symbols that are involved in parsing this statement. You should carefully compare
these procedures to the corresponding rules of the grammar. Figure 5.13(b} is a
step-by-step representation of the procedure calls and token examinations
similar to that shown in Fig. 5.12(b). You are urged to follow through each step
of the analysis of this statement, using the procedures in Fig. 5.13(a). Compare

procedure ELAD

begin
FCUND := FALSE
if TOKEN = 8 {READ) then
begin
advarice to next token
if TOKEN = 20 { (} then
begin

advance to next token

if IDLIST returns success then
if TOKEN = 21 {) } then

begin
FOUND := TRUE

advance to next token

end {if) }
}
if FOUND = TRUE then

return success
else

return failure
end (READ}

procedure IDLIST

begin
FOUNT := FALSE
if TCKEN = 22
begin
FOUND := TRUE
advance to next token
whbile (TOKEN = 14 {,})

and (FOUND = TRUE) d&o
begin

advance to next token
if TOKEN = 22 {id} then
advance to next token
else
FOUND := FALSE
end (while}
end {if id}
if FOUND = TRUE then
return success
else

return failure

end {IDLIST}

Figure 5.12

(a)

IDLIST

14
{VALUE}
(b)

Recursive-descent parse of a READ statement.

(iii)

IDLIST

ia
{VALUE}

254

System Software

the parse tree built in Fig. 5,13(b) te the one in Fig. 5.3(b). Note that the differences
between these two trees cor.espond exactly to the differences between the
grammars of Figs. 5.11 and 5.2.

Our examples of recursive-descent parsing have involved only single state-
ments; however, the same technique can be applied to an entire program.
In that case, the syntactic analysis would consist simply of a call to the proce-
dure for <prog>. The calls from this procedure would create the parse tree for
the program. You may want to write the procedures for the other nonterminals,
following the grammar of Fig. 5.1, and apply this method to the program in

procedure ASSIGN
begin
FOUND := FALSE
if TOKEN = 22 {id} then
begin
advance to next token
if TOKEN = 15 { := } then
begin
advance to next token
if EXP returns success then
FOUND := TRUE
end {if := }
end {(if id}
if FOUND = TRUE then
return success
else
return failure
end {ASSIGN}

procedure EXP
begin
FOUND := FALSE
if TERM returns success then
begin
FOUND := TRUE
while ((TOKEN = 16 {+}) or (TOKEN = 17 {-1))
and (FOUND = TRUE) do
begin
advance to next token
if TERM returns failure then
FOUND := FALSE
end {while}
end {if TERM}
if FOUND = TRUE then
return success
else
return failure
end {EXP}

Figure 5.13 Recursive-descent parse of an assignment statement.)

Compilers

procedure TERM
begin
FOUND := FALSE
if FACTOR returns success then
begin
FOUND := TRUE
while ({TOKEN = 18 {*}) or (TOKEN = 19 {DIV})
and (FOUND = TRUE) do
begin
advance to next token
if FACTOR returns failure then
FOUND := FALSE
end {while}
end {if FACTOR}
if FOUND = TRUE then
return success
else
return failure
end {TERM}

procedure FACTOR
begin
FOUND := FALSE
if (TOKEN = 22 {id}) or (TOKEN = 23 {int}) then
begin
FOUND := TRUE
advance to next token
end {if id or int}
else
if TOKEN = 20 { (} then
begin
advance to next token
if EXP returns success then
if TOKEN = 21 {) } then
begin
FOUND := TRUE
advance to next token
end {if)}
end {if (}
if FOUND = TRUE then
return success
else
return failure
end {FACTOR}

(a)

Figure 5.13 (contd)

255

Systen Softiware

(i) ASSIGN

7
/
/
/
/
/

ia; L=
{VARIANCE}

(i) ASSIGN
’ 7
/
/
/
/
7
id;
{VARIANCE} EXP

(i) ASSIGN

id, i=
{VARIANCE}

TERM

Figure 5.13 (cont’d)

(v) ASSIGN

/
ia,
{VARIANCE}

TERM
FACTOR
1
]
{
id,
{SUMSQ}
v) ASSIGN
7 1
/0
S
’ |
/]
ia; t=
{VARIANCE}
TERM
¥
|
i
(
DIV
FACTORAJ FACTOR
T T
1 1
] 1
]]
16.2 int
{SUMSQ} {100}

Compilers 257
(vi) ASSIGN (vii) ASSIGN
7 v 7 T
/7 /
/o /7 :
/ | ’ N
/ 1 4 I
14, = 14, =
{VARIANCE} EXP {VARIANCE} EXP
T
|
{
i |
TERM TERM TERM TERM
T
i I
1 |
| l
DIV DIV
FACTOR FACTOR FACTOR FACTOR FACTOR
T T T T T
| | | ! |
| | | g |
1‘2 int 1‘2 int 1‘3
{SumMsQ} {100} {SUMSQ} {100} {MEAN}
(viii) ASSIGN
7 1
/7 |
/ |
/ |
/
/ |
ia; =
{VARIANCE} E’:P
|
|
[
I
TERM - TERM
1 |
I 1
| 1
1 1
DIV *
FACTOR FACTOR FACTOR FACTOR
T 1 1]
i I 1]
1 1 1]
| I i t
1a, int 1dz 144
{suMsqQ} {100} {MEAN} {MEAN}
(b)
Figure 5.13 (cont'd)

258

System Software

Fig. 5.1. The result should be similar to the parse tree in Fig. 5.4. The only dif-
ferences should be ones created by the modifications made to the grammar in
Fig. 5.11.

Note that there is nothing inherent in a programming language that
requires the use of any particular parsing technique. We have used one bottom-
up parsing method and one top-down method to parse the same program,
using essentially the same grammar. It is even possible to use a combination of
techniques. Some compilers use recursive descent for high-level constructs (for
example, down to the statement level), and then switch to a technique such as
operator precedence to analyze constructs such as arithmetic expressions.
Further discussions of parsing methods can be found in Aho et al. (1988).

5.1.4 Code Generation

After the syntax of a program has been analyzed, the last task of compilation

is the generation of object code. In this section we discuss a simple code-
generation technique that creates the object code for each part of the program
as soon as its syntax has been recognized.

The code-generation technique we describe involves a set of routines, one
for each rule or alternative rule in the grammar. When the parser recognizes a
portion of the source program according to some rule of the grammar, the
corresponding routine is executed. Such routines are often called semantic
routines because the processing performed is related to the meaning we associ-
ate with the corresponding construct in the language. In our simple scheme,
these semantic routines generate object code directly, so we refer to them as
code-generation routines. In more complex compilers, the semantic routines
might generate an intermediate form of the program that would be analyzed
further in an attempt to generate more efficient object code. We discuss this
possibility in more detail in Sections 5.2 and 5.3.

The code-generation routines we discuss in this section are designed for use
with the grammar in Fig. 5.2. As we have seen, neither of the parsing techniques
discussed in Section 5.1.3 recognizes exactly the constructs specified by this
grammar. The operator-precedence method ignores certain nonterminals, and the
recursive-descent method must use a slightly modified grammar. However, there
are parsing techniques not much more complicated than those we have discussed
that can parse according to the grammar in Fig. 5.2. We choose to use this grammar
in our discussion of code generation to emphasize the point that code-generation
techniques need not be associated with any particular parsing method.

The specific code to be generated clearly depends upon the computer for
which the program is being compiled. In this section we use as an example the
generation of object code for a SIC/XE machine.

Compilers

Our code-generation routines make use of two data structures for working
storage: a list and a stack. Items inserted into the list are removed in the order
of their insertion, first in—first out. Items pushed onto the stack are removed
(popped from the stack) in the opposite order, last in—first out. The variable
LISTCOUNT is used to keep a count of the number of items currently in the
list. The code-generation routines also make use of the token specifiers
described in Section 5.1.2; these specifiers are denoted by S(token). For a token
id, S(id) is the name of the identifier, or a pointer to the symbol-table entry for
it. For a token int, S(int) is the value of the integer, such as #100.

Many of our code-generation routines, of course, create segments of object
code for the compiled program. We give a symbolic representation of this
code, using SIC assembler language. You should remember, however, that the
actual code generated is usually machine language, not assembler language.
As each piece of object code is generated, we assume that a location counter
LOCCTR is updated to reflect the next available address in the compiled
program (exactly as it is in an assembler).

Figure 5.14 illustrates the application of this process to the READ statement
on line 9 of the program in Fig. 5.1. The parse tree for this statement is repeated
for convenience in Fig. 5.14(a). This tree can be generated with many different
parsing methods. Regardless of the technique used, however, the parser always
recognizes at each step the leftmost substring of the input that can be interpreted
according to a rule of the grammar. In an operator-precedence parse, this recogni-
Hon oc¢curs when a substring of the input is reduced to some nonterminal <N,>.
In a recursive-descent parse, the recognition occurs when a procedure returns to
its caller, indicating success. Thus the parser first recognizes the id VALUE as an
<id-list>, and then recognizes the complete statement as a <read>.

Figure 5.14(c) shows a symbolic representation of the object code to be
generated for the READ statement. This code consists of a call to a subroutine
XREAD, which would be part of a standard library associated with the compiler.
The subroutine XREAD can be called by any program that wants to perform a
READ operation. XREAD is linked together with the generated object program
by a linking loader or a linkage editor. (The compiler includes enough informa-
tion in the object program to specify this linking operation, perhaps using
Modification records such as those discussed in Chapter 2.) This technique is
commonly used for the compilation of statements that perform relatively com-
plex functions. The use of a subroutine avoids the repetitive generation of large
amounts of in-line code, which makes the object program smaller.

Since XREAD may be used to perform any READ operation, it must be
passed parameters that specify the details of the READ. In this case, the para-
meter list for XREAD is defined immediately after the JSUB that calls it. The
first word in this parameter list contains a value that specifies the number of
variables that will be assigned values by the READ. The following words give

259

260

System Software

<id-list>

<id-list>

<read>

(read)

(id-list)

READ (1a

{VALUE}
(a)

::= id

add s(id) to list
add 1 to LISTCOUNT

::= <id-list> , id

add s(id) to list
add 1 to LISTCOUNT

READ (<id-list>)

generate [+JSUB XREAD]
record external reference to XREAD
generate [WORD LISTCOUNT]
for each item on list &
begin
remove S(ITEM) from list
generate [WORD S(ITEM)]
end
LISTCOUNT := 0

()

+JSUB XREAD
WORD 1
WORD VALUE

(c)

Figure 5.14 Code generation for a READ statement.

